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1. Abstract 

The increasing prevalence of low-cost drones raises concerns about unauthorized operations 
and threats to airspace security due to their misuse. The accessibility of low-cost drones poses 
an asymmetric threat as current methods for tracking and neutralising these drones are costly. 
One solution to tackle this issue is to employ low-cost drones to track and home in on the drone 
target, which requires a computer vision model with a controller using visual inputs. 
Traditionally, Proportional-Integral-Derivative (PID) controllers are used for this purpose, but 
such a deterministic method may struggle to deal with dynamic environments due to its 
inability to make anticipatory moves. However, controllers trained with Proximal Policy 
Optimisation (PPO)-based reinforcement learning show promising potential in tackling these 
limitations. This study compares the performance of a PID controller and a PPO controller in 
tracking drone targets through simulations conducted in Unity. Results revealed that while the 
PID controller maintained high engagement success in simpler scenarios such as straight line 
and circular paths, engagement success dropped significantly when dealing with more 
challenging conditions such as sharp turns and continuous curvature. The PPO controller 
showed excellent reliability and successfully preserved the target within its field of view even 
in the challenging conditions that the PID controller struggled with. 

2. Introduction 

Unmanned Aerial Vehicles (UAVs), commonly known as drones, have been employed in 
various fields such as disaster management, agriculture, and defence [1]. However, their 
increasing prevalence raises concerns about unauthorized operations and threats to airspace 
security due to their misuse [2]. The accessibility of low-cost drones poses an asymmetric threat 
as current methods for tracking and neutralising these drones are costly [3]. Hence, finding a 
cost-effective method to track, monitor and take down such drones is therefore crucial for 
mitigating these risks. One solution to tackle this issue is to employ low-cost drones to track 
and home in on the drone target.  

 
Figure 1: Drone tracking feedback loop 

Currently, drone tracking methods involve feeding sensory input, such as from visual or 
infrared sensors, into a control system that maintains continuous monitoring of the drone. 
Vision-based methods use high-resolution cameras coupled with object detection algorithms 
(YOLO, R-CNNs) to detect and track drones in real-time [4]. The control system will then 
provide movement outputs along the four axes of movement, completing the drone tracking 
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feedback loop in Fig 1. Traditionally, Proportional-Integral-Derivative (PID) control is used as 
the control system for drones through correcting small tracking errors. While PID controllers 
are easy to design and implement, their deterministic nature prevents them from making 
anticipatory moves to better preserve the target within its field of view. All environmental 
factors such as wind were also encapsulated into the overall tracking error, and thus PID 
controllers have a less nuanced understanding of the different causes for the tracking errors and 
may struggle to maintain optimal performance without continuous adjustments [5]. 

Reinforcement learning offers a promising solution to these limitations by enabling drones to 
adapt to changes in the environment through continuous learning. Proximal Policy 
Optimization (PPO) has become particularly popular due to its balance between performance 
and computational efficiency [6]. Through feedback-based learning, PPO allows agents to 
autonomously optimize their behaviour in uncertain and erratic environments which may 
otherwise overwhelm a PID controller.  

Due to the iterative process required to train the PPO controller and the energy intensity of 
training it in real-world scenarios, a Unity simulation environment was used in the training 
process before deployment in real-world scenarios. 

3. Materials and Methods 

3.1 Homogenous Projection 

 
Figure 2: Conversion of 3D coordinates to screen space coordinates 

In real-life, drones are given inputs from computer vision models that provide the pixel 
coordinates as well as the width and height of the target from drone camera feeds. To simulate 
these real-life inputs as closely as possible, the 2D projection of the target from the perspective 
of the drone was required as inputs for the model even though the absolute 3D coordinates of 
the target were known. 2D screen coordinates (𝑥ᇱ, 𝑦ᇱ) as well as screen-space width and height 
(𝑤′, ℎ′)  can be obtained from a 3D point, (𝑥, 𝑦, 𝑧)  through homogenous transformations, 
represented by a series of matrix multiplications: 

𝑣ே஽஼ =

𝑃 ⋅ 𝑉 ⋅ ቎

𝑥
𝑦
𝑧

1

቏

𝑤
(1)

 

Where 𝑃  is the camera’s projection matrix, 𝑉  the camera'sx view matrix and 𝑤  the fourth 
coordinate after applying 𝑃 ⋅ 𝑉. This results in a point in normalized device coordinate space, 
𝑣ே஽஼. It is then mapped to screen space through the following transformations: 
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(𝑥ᇱ, 𝑦ᇱ) = ൞
𝑥ᇱ =

𝑁𝐷𝐶௫ + 1

2
⋅ 𝑤௦

𝑦ᇱ =
𝑁𝐷𝐶௬ + 1

2
⋅ ℎ௦

(2) 

Where 𝑤௦  and ℎ௦  is the width and height of the screen, respectively. 𝑤′  and ℎ′  can be 
determined by taking the difference in the coordinates of the bounding box’s min and max 
corners. 

3.2 Proximal Policy Optimization 
Reinforcement learning was conducted using Unity’s ML-Agents with Proximal Policy 
Optimization (PPO) [6]. The agent was exposed to a limited number of inputs, including 
information regarding the drone entity it controls (position and direction in which it is facing) 
and screen-space coordinates of the target and obstacles. Through creating an appropriate 
reward function, the agent will converge to an optimal policy to track the target. 

 
Figure 3: Considerations for reward function  

One of the considerations in creating the reward function was the distance between the agent 
and the target, as shown in Fig 3A. Using the Euclidean distance, the reward was scaled 
appropriately based on the maximum depth of vision such that a distance closer to the target 
will be given a bigger reward. 

𝑅ௗ௜௦௧௔௡௖௘ =  1 −
ඥ(𝑥௔ − 𝑥௧)ଶ + (𝑦௔ − 𝑦௧)ଶ + (𝑧௔ − 𝑧௧)ଶ

40
(3) 

Another consideration was the deviation of the target from the screen centre, as shown in Fig 
3B. Using the Euclidean distance between the normalized screen coordinates of the centre of 
the target and the screen centre, the reward was scaled to shape the behaviour of keeping the 
target to the centre of the agent’s field of view. 

𝑅௦௖௥௘௘௡ = 1 − ඥ(𝑥௡௢௥௠௔௟௜௭௘ௗ − 0.5)ଶ + (𝑦௡௢௥௠௔௟௜௭௘ௗ − 0.5)ଶ (4) 

The agent was also rewarded for aligning its forward direction with the target by taking the dot 
product of the forward direction unit vectors as shown in Fig 3C. Thus, the reward is scaled to 
the range of [-1,1] where an exact alignment would give a reward of 1, an exact opposite 
alignment would give a reward of -1, and a perpendicular alignment would give a reward of 0. 

𝑅௔௟௜௚௡௠௘௡௧ = 𝐹௔
෡ ∙ 𝐹௧

෡ (5) 
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The overall reward for each episode can then be expressed as: 

𝑅௧௢௧௔௟ = 𝑅ௗ௜௦௧௔௡௖௘ + 𝑅௦௖௥௘௘௡ + 𝑅௔௟௜௚௡௠௘௡௧ (6) 

An episode was terminated and a penalty of 50 was given whenever the agent was more than 
60 metres away from the target or could not view the target for more than 5 seconds. Although 
40 metres is the maximum depth of view for the agent, an extra leeway of 20 metres is provided 
before the episode is ended. This potentially allows for the agent to learn to regain sight of the 
target within its field of view. However, the agent would still face a smaller penalty as per 
equation (7) for this extra distance of 20 metres outside of its depth of view. 

3.3 Curriculum Learning 

Curriculum learning is a methodology that can be applied to the training process in 
reinforcement learning. Through ordering training examples in increasing difficulty, 
knowledge accumulated from previous training examples can be leveraged upon when learning 
a subsequent, more challenging task, thus leading to faster convergence to an optimal policy 
[7]. The curriculum that was devised gradually incremented the variation of the target’s base 
speed and maximum speed. The agent was also subjected to increasingly difficult target 
movements, starting from a straight-line path, followed by a circle, then a completely random 
path. 

Lesson Base speed (m/s) Maximum target speed variation (m/s) 
1 2 0 
2 5 1 
3 10 2 
4 15 5 

Table 1: Base speed and maximum target speed variation for each lesson 

 
Figure 4: Graph of cumulative reward over episodes 

As shown in Fig 4, dips in cumulative reward occurred whenever training parameters were 
adjusted during curriculum learning. Temporary performance decline, as indicated by dips in 
cumulative reward, reflected the agent’s adaptation to increasing task complexity. 

3.4 Proportional-Integral-Derivative (PID) Controller 
The PID controller, used as a benchmark for comparison with the PPO controller, is described 
by the following discretized formula: 

𝑈[𝑛] = 𝑈[𝑛 − 1] + 𝐸[𝑛] ൬𝐾௉ + 𝐾ூ𝑇 +
𝐾஽

𝑇
൰ − 𝐸[𝑛 − 1] ൬𝐾௉ +

2𝐾஽

𝑇
൰ + 𝐸[𝑛 − 2]

𝐾஽

𝑇
(7) 
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Where 𝑈[𝑛]  is the control output and 𝐸[𝑛]  the error at the 𝑛 -th timestep. 𝑇  represents the 
timestep while 𝐾௉, 𝐾ூ and 𝐾஽ are gain constants for the proportional, integral, and derivative 
terms of the controller. The following 𝐾௉, 𝐾ூ and 𝐾஽ values were tuned manually and used for 
this study. 

 ψ x y z 
𝐾௉ 0.32 0.28 0.28 0.50 
𝐾ூ 0.025 0.0384 0.0384 0.0384 

Table 2: 𝐾௉, 𝐾ூ and 𝐾஽ values for different axis of motion 

3.5 Evaluation Criterion 
The performance of the PID controller and the PPO controller were evaluated based on a score 
S, which indicates the percentage of time each controller could keep the target within its field 
of view over a period T. This is expressed as  

𝑆 =
1

𝑇
෍ 𝐼௧

்

௧ୀଵ

(8) 

Where 𝐼௧ is the indicator variable, such that 

𝐼௧ = ቄ
1 𝑖𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑛 𝐹𝑂𝑉

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9) 

 

 
Figure 5: Diagram of evaluation criteria 

A higher score indicates a better ability to keep the target in the agent’s field of view. 

3.6 Experiment Setup 
The training process was run on Windows 11 operating system powered with an Intel Core i9- 
12900 CPU @2500Mhz and 64GB of RAM. The training model was developed with Unity’s 
ML-Agents 0.29.0. 

The limitations for flight states used for this study were as follows: 

Parameter Limit 
Maximum horizontal speed 20 m/s 

Field of View 80 
Maximum view range 40 m 

Table 3: Limitations for flight states 
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The target was moved along different paths to assess the agent’s performance under different 
unpredictable conditions. 

Path Type Path Diagram and Name 

Simple 

 
Line 

Continuous 
Curvature 

    
Circle Figure 8 S-shape Spiral 

Sharp 
Turns 

  
Star Zigzag 

Random 

 
Random 

Table 4: Different types of paths used testing (top-down view) 

For each path, three different bounding areas (50m x 50m, 100m x 100m, 200m x 200m) were 
evaluated to observe for any trends in engagement success due to the size of the path. 

For each path they were subjected, the agents were initialized at the same random position 
within a 15-metre range and at least 5 metres away from the target. The target was initially at 
rest and accelerated uniformly to a speed of 15m/s. A run was considered to have ended when 
the target completed the path once.  
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4. Results 

 
Figure 6: Boxplot of engagement success for PID and PPO controllers across various paths 

bounded by a 50m x 50m area 

 
Figure 7: Boxplot of engagement success for PID and PPO controllers across various paths 

bounded by a 100m x 100m area 

 
Figure 8: Boxplot of engagement success for PID and PPO controllers across various paths 

bounded by a 200m x 200m area 
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The results from the performance evaluation revealed that the PPO controller outperformed the 
PID controller in most cases. From Fig 6, the PPO controller significantly outperformed the 
PID controller in the Star and Random paths. From Fig 7 and Fig 8, a similar trend can be 
observed regardless of the bounding area, where the PPO controller significantly outperformed 
the PID controller in the Star, Random and even the Zigzag paths. 

However, there were some cases where the PID controller exhibited better engagement success 
than the PPO controller. From Fig 6 and Fig 7, the PID controller had slightly higher 
engagement success for the Figure 8 path and from Fig 8, the PID controller had significantly 
higher engagement success for the Circle and Spiral paths.  

Another observation from the results was that the PID controller had less reliable performance 
for larger bounding areas. This was evident from the significantly larger interquartile ranges 
for engagement success of the PID controller across most paths in Fig 7 and Fig 8 than that in 
Fig 6. On the other hand, the PPO controller had generally small interquartile ranges across all 
paths and all bounding areas, indicating that there was less variability in engagement success. 

5. Findings 

The observed trends could be attributed to the fundamental differences between the two 
controllers. The PID controller's reliance on predefined error minimization rules made it 
effective for simple paths but less capable of adapting to dynamic movements. This limitation 
became more evident in paths with sharp turns such as the Star, Zigzag and Random paths, thus 
explaining the consistent poorer engagement success for the PID controller in these paths. On 
the other hand, the PPO controller, trained using reinforcement learning, exhibited higher 
adaptability due to its ability to generalize across varying conditions and paths. Therefore, it 
could anticipate and react to the sharp changes in direction of the target, which the deterministic 
PID controller was unable to do. 

Moreover, the greater reliability of the PPO controller observed from the results could be due 
to different levels of sensitivity to the initial conditions of the agents. During the experiment 
runs, it was observed that the PID controller was more sensitive to its starting position. If it 
was initialised closer to the target, it was more likely to lose track of the target as it was unable 
to quickly adjust to the target’s movements. 

6. Conclusion 

This study compared drone target tracking abilities of a PID controller and a PPO controller 
through simulations conducted in Unity. Results revealed that the PPO controller was generally 
better than the PID controller in maintaining the target within its field of view and tracking it, 
especially in unpredictable conditions and sharp turns. Furthermore, the PPO controller 
exhibited greater reliability, achieving less variability in engagement success over multiple 
simulation runs. 

Future research could focus on exploring alternative training methodologies to allow the PPO 
controller to adapt to vastly different environments than its training environment including the 
addition of environmental factors such as wind and obstacles. One area that could be explored 
is adversarial reinforcement learning, where a destabilizing adversary is introduced, allowing 
the agent to be exposed to more active adversarial strategies that reflect real-life scenarios more 
accurately. Thus, this can allow the PPO controller to be more robust to differences in training 
and test conditions [8]. 
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7. Code Availability 

All data and code used for running simulations is available on a GitHub repository at 
https://github.com/zyrvad/rl-drone-tracker. 
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10.  Appendix 

Appendix A: Table of Results 

  Minimum  1st Quartile  Median  3rd Quartile  Maximum 
  PPO PID  PPO PID  PPO PID  PPO PID  PPO PID 

Line 0.391 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
Circle 0.741 1.00  0.907 1.00  0.991 1.00  0.991 1.00  1.00 1.00 

Figure 8 0.724 0.798  0.803 0.855  0.858 0.891  0.901 0.909  0.961 0.973 
S-shape 0.835 1.00  0.991 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
Spiral 0.772 1.00  0.802 1.00  0.937 1.00  0.980 1.00  0.99 1.00 
Star 0.440 0  0.649 0  0.726 0.027  0.787 0.364  0.974 1.00 

Zigzag 0.206 1.00  1.00 1.00  1.00 1.00  1.00 1.00  1.00 1.00 
Random 0.492 0.130  0.532 0.246  0.581 0.314  0.629 0.387  0.692 0.656 

Table 5: Five number summary of engagement success for PPO and PID controllers across 
various paths bounded by a 50m x 50m area 

  Minimum  1st Quartile  Median  3rd Quartile  Maximum 
  PPO PID  PPO PID  PPO PID  PPO PID  PPO PID 

Line 0.066 1.00  0.904 1.00  0.997 1.00  1.00 1.00  1.00 1.00 
Circle 0.385 0  0.504 0.009  0.628 0  0.803 0.974  0.982 1.00 

Figure 8 0.587 0  0.723 0.107  0.819 0.9  0.906 1.00  0.916 1.00 
S-shape 0.812 1.00  0.957 1.00  0.996 1.00  1.00 1.00  1.00 1.00 
Spiral 0.589 0.013  0.633 0.013  0.828 0.5  0.904 0.942  0.925 1.00 
Star 0.523 0  0.571 0  0.614 0  0.65 0.056  0.695 0.815 

Zigzag 0.506 0.008  0.862 0.009  0.906 0  0.936 0.239  0.963 0.884 
Random 0.421 0.007  0.590 0.010  0.635 0.100  0.712 0.246  0.752 0.456 

Table 6: Five number summary of engagement success for PPO and PID controllers across 
various paths bounded by a 100m x 100m area 

 Minimum  1st Quartile  Median  3rd Quartile  Maximum 
 PPO PID  PPO PID  PPO PID  PPO PID  PPO PID 

Line 0.778 0.856  0.930 1.00  0.989 1.00  1.00 1.00  1.00 1.00 
Circle 0.391 0.032  0.437 0.413  0.453 0.952  0.471 0.971  0.815 0.986 

Figure 8 0.503 0.00  0.546 0.005  0.756 0.363  0.809 0.959  0.841 1.00 
S-shape 0.621 0.00  0.938 0.006  0.973 0.045  0.994 1.00  0.994 1.00 
Spiral 0.346 0.408  0.472 0.565  0.580 0.775  0.598 0.929  0.715 1.00 
Star 0.405 0.00  0.435 0.00  0.483 0.005  0.0571 0.005  0.697 0.465 

Zigzag 0.790 0.003  0.822 0.003  0.862 0.003  0.887 0.004  0.903 0.264 
Random 0.358 0.011  0.432 0.077  0.550 0.131  0.617 0.149  0.676 0.268 

Table 7: Five number summary of engagement success for PPO and PID controllers across 
various paths bounded by a 200m x 200m area 

 


